MATERIAS OPTATIVAS

1º DE BACHILLERATO DE CIENCIAS y TECNOLOGÍA

TECNOLOGÍA E INGENIERÍA

En la sociedad actual, el desarrollo de la tecnología por parte de las ingenierías se ha convertido en uno de los ejes en torno a los cuales se articula la evolución sociocultural. En los últimos tiempos, la tecnología, entendida como el conjunto de conocimientos y técnicas que pretenden dar solución a las necesidades, ha ido incrementando su relevancia en diferentes ámbitos de la sociedad, desde la generación de bienes básicos hasta las comunicaciones. En definitiva, se pretende mejorar el bienestar y las estructuras económicas sociales y ayudar a mitigar las desigualdades presentes en la sociedad actual, evitando generar nuevas brechas cognitivas, sociales, de género o generacionales. Se tratan así, aspectos relacionados con los desafíos que el siglo XXI plantea para garantizar la igualdad de oportunidades a nivel local y global.

En una evolución hacia un mundo más justo y equilibrado, conviene prestar atención a los mecanismos de la sociedad tecnológica, analizando y valorando la sostenibilidad de los sistemas de producción, el uso de los diferentes materiales y fuentes de energía, tanto en el ámbito industrial como doméstico o de servicios.

Para ello, los ciudadanos necesitan disponer de un conjunto de saberes científicos y técnicos que sirvan de base para adoptar actitudes críticas y constructivas ante ciertas cuestiones y ser capaces de actuar de modo responsable, creativo, eficaz y comprometido con el fin de dar solución a las necesidades que se plantean.

En este sentido, la materia de Tecnología e Ingeniería pretende aunar los saberes científicos y técnicos con un enfoque competencial para contribuir a la consecución de los objetivos de la etapa de Bachillerato y a la adquisición de las correspondientes competencias clave del alumnado. A este respecto, desarrolla aspectos técnicos relacionados con la competencia digital, con la competencia matemática y la competencia en ciencia, tecnología e ingeniería, así como con otros saberes transversales asociados a la competencia lingüística, a la competencia personal, social y aprender a aprender, a la competencia emprendedora, a la competencia ciudadana y a la competencia en conciencia y expresiones culturales.

Las competencias específicas se orientan a que el alumnado, mediante proyectos de diseño e investigación, fabrique, automatice y mejore productos y sistemas de calidad que den respuesta a problemas planteados, transfiriendo saberes de otras disciplinas con un enfoque ético y sostenible. Todo ello se implanta acercando al alumnado, desde un enfoque inclusivo y no sexista, al entorno formativo y laboral propio de la actividad tecnológica e ingenieril. Asimismo, se contribuye a la promoción de vocaciones en el ámbito tecnológico entre los alumnos y alumnas, avanzando un paso en relación a la etapa anterior, especialmente en lo relacionado con saberes técnicos y con una actitud más comprometida y responsable, impulsando el emprendimiento, la colaboración y la implicación local y global con un desarrollo tecnológico accesible y sostenible. La resolución de problemas interdisciplinares ligados a situaciones reales, mediante soluciones tecnológicas, se constituye como eje vertebrador y refleja el enfoque competencial de la materia.

En este sentido, se facilitará al alumnado un conocimiento panorámico del entorno productivo, teniendo en cuenta la realidad y abordando todo aquello que implica la existencia de un producto, desde su creación, su ciclo de vida y otros aspectos relacionados. Este conocimiento abre un amplio campo de posibilidades al facilitar la comprensión del proceso de diseño y desarrollo desde un punto de vista industrial, así como a través de la aplicación de las nuevas filosofías maker o DiY («hazlo tú mismo») de prototipado a medida o bajo demanda.

La coherencia y continuidad con etapas anteriores se hace explícita, especialmente en las materias de Tecnología y Digitalización y Tecnología de Educación Secundaria Obligatoria, estableciendo entre ellas una

gradación en el nivel de complejidad, en lo relativo a la creación de soluciones tecnológicas que den respuesta a problemas planteados mediante la aplicación del método de proyectos y otras técnicas. 435

Los criterios de evaluación en esta materia se formulan con una evidente orientación competencial y establecen una gradación entre primero y segundo de Bachillerato, haciendo especial hincapié en la participación en proyectos durante el primer nivel de la etapa y en la elaboración de proyectos de investigación e innovación en el último.

La materia se articula en torno a siete bloques de saberes básicos, cuyos contenidos deben interrelacionarse a través del desarrollo de situaciones de aprendizaje competenciales y actividades o proyectos de carácter práctico.

El bloque «Proyectos de investigación y desarrollo» se centra en la metodología de proyectos, dirigida a la ideación y creación de productos, así como su ciclo de vida.

El bloque «Materiales y fabricación» aborda los criterios de selección de materiales y las técnicas más apropiadas para su transformación y elaboración de soluciones tecnológicas sostenibles.

Los bloques «Sistemas mecánicos» y «Sistemas eléctricos y electrónicos» hacen referencia a elementos, mecanismos y sistemas que puedan servir de base para la realización de proyectos o ideación de soluciones técnicas.

El bloque «Sistemas informáticos» presenta saberes relacionados con la informática, como la programación textual y las tecnologías emergentes, para su aplicación a proyectos técnicos.

El bloque «Sistemas automáticos» aborda la actualización de sistemas técnicos para su control automático mediante simulación o montaje, contemplando además las potencialidades que ofrecen las tecnologías emergentes en sistemas de control.

El bloque «Tecnología sostenible» aporta al alumnado una visión de la materia alineada con algunas metas de los Objetivos de Desarrollo Sostenible.

Con el objetivo de conferir un enfoque competencial a la materia, es conveniente que los saberes puedan confluir en proyectos que supongan situaciones de aprendizaje contextualizadas, en las que el alumnado pueda aplicar sus conocimientos y destrezas para dar solución a una necesidad concreta, que puede emerger de un contexto personal, social o cultural, a nivel local o global con una actitud de compromiso creciente. De este modo, se favorece la creación de vínculos entre el entorno educativo y otros sectores sociales, económicos o de investigación.

A tenor de este enfoque competencial y práctico, la propuesta de situaciones de aprendizaje ligadas a proyectos interdisciplinares en las que el alumnado pueda explorar, descubrir, experimentar y reflexionar desde la práctica en un espacio que permita incorporar técnicas de trabajo, prototipado rápido y fabricación offline, a modo de taller o laboratorio de fabricación, supone una opción que aporta un gran potencial de desarrollo, en consonancia con las demandas de nuestra sociedad y de nuestro sistema productivo.

DESARROLLO DIGITAL

La adquisición de capacidades en el ámbito de la digitalización es un pilar básico para el desarrollo personal y profesional de los ciudadanos. La conexión global de los dispositivos ha creado nuevas formas de comunicación y ha cambiado el paradigma de las relaciones entre individuos en todos los ámbitos, generando un rápido progreso tecnológico y social que requiere de nuevos saberes y destrezas que eviten la brecha digital.

La materia de Desarrollo Digital persigue dar continuidad a las materias afines cursadas en la etapa de Educación Secundaria Obligatoria y contribuir a la consecución de las competencias y los objetivos previstos para la etapa de Bachillerato, proporcionando un conjunto de saberes que permita dar solución a necesidades digitales de su entorno de trabajo y adoptar actitudes responsables y críticas en el uso de la tecnología.

La materia se organiza en seis bloques de saberes básicos que se deben plantear a través de proyectos o situaciones de aprendizaje de carácter práctico.

El bloque «Dispositivos digitales y sistemas operativos», aborda los métodos de instalación y gestión de los dispositivos del entorno personal de trabajo, indagando tanto en la parte física del ordenador (hardware) como en el sistema operativo que sirve de base para la ejecución de aplicaciones. También se hace referencia a los dispositivos conectados (IoT) que permiten la interacción con el entorno doméstico de forma remota.

El bloque «Sistemas interconectados», hace referencia a los fundamentos de internet y las redes de dispositivos en particular. Se aporta una visión global del flujo de datos entre dispositivos electrónicos conociendo distintas topologías y formas de conexión entre equipos tanto en el ámbito del ordenador personal como con dispositivos móviles y conectados (IoT).

El bloque «Producción digital de contenidos», tiene como finalidad el desarrollo de productos digitales bien para el intercambio de información a través de documentos, elementos gráficos y datos, o bien para la expresión de ideas con la realización de productos visuales y multimedia.

El bloque «Programación de dispositivos», introduce al alumnado en la creación de programas informáticos mediante lenguajes de programación que permitan resolver tareas o algoritmos sencillos y evaluar el proceso de desarrollo de una aplicación informática.

El bloque «Seguridad digital», plantea las medidas de protección de los dispositivos informáticos frente a amenazas y ataques de software malicioso. Asimismo, se abordan temas sobre el mantenimiento de la privacidad de los datos, violencia en la red, así como riesgos físicos y mentales del mal uso de la tecnología.

El bloque «Ciudadanía digital», plantea sistemas para la gestión online de los trámites administrativos y comerciales y, además, aporta una visión transversal en el uso de la tecnología relacionada con la ética de la información disponible en la red: análisis crítico, sesgos, uso de contenidos digitales respetando los tipos de licencias, así como los fundamentos de la inteligencia artificial y sus repercusiones sociales.

Para el desarrollo de la materia conviene que los saberes se enfoquen mediante un aprendizaje basado en proyectos o a través de situaciones de aprendizaje en prácticas contextualizadas. Así, el alumnado podrá resolver de forma competente y creativa necesidades concretas de su contexto personal mejorando su motivación y compromiso con su entorno social y educativo.

La materia de Biología, Geología y Ciencias Ambientales se orienta a la consecución y mejora de seis competencias específicas propias de las ciencias que son la concreción delos descriptores operativos para la etapa, derivados a su vez de las ocho competencias claveque constituyen el eje vertebrador del currículo. Estas competencias específicas pueden resumirse en: interpretar y transmitir información científica y argumentar sobre ella; localizary evaluar críticamente información científica; aplicar los métodos científicos en proyectos de investigación; resolver problemas relacionados con las ciencias biológicas, geológicas y medioambientales; promover iniciativas relacionadas con la salud y la sostenibilidad y analizar el registro geológico. El trabajo de las competencias específicas de esta materia y la adquisición de sus saberes básicos contribuyen al desarrollo de todas las competenciasclave y a satisfacer, como se explica a continuación, varios de los objetivos de la etapa y con ello al crecimiento emocional del alumnado y a su futura integración social y profesional.

Biología, Geología y Ciencias Ambientales favorece el compromiso responsable del alumnado con la sociedad a nivel global al promover los esfuerzos para lograr un modelo de desarrollo sostenible (competencias STEM y ciudadana) que contribuirá a la mejora de la salud y la calidad de vida y a la preservación del patrimonio natural y cultural (competenciaen conciencia y expresión culturales). Esta materia también busca estimular la vocación científica en el alumnado, especialmente en las alumnas, para contribuir a acabar con el bajo número de mujeres en puestos de responsabilidad en investigación, fomentando así la igualdad efectiva de oportunidades entre ambos sexos (competencias STEM y personal, social y de aprender a aprender).

Asimismo, trabajando esta materia se afianzarán los hábitos de lectura y estudio en el alumnado por lo que la comunicación oral y escrita en la lengua materna y posiblemente en otras lenguas (competencias STEM, en comunicación lingüística y plurilingüe) juega unimportante papel en ella.

Además, desde Biología, Geología y Ciencias Ambientales se promueve entre el alumnado la búsqueda de información sobre temas científicos utilizándose como herramienta básica las tecnologías de la información y la comunicación (competencias STEM y digital).

Del mismo modo, esta materia busca que los alumnos y alumnas diseñen y participen en el desarrollo de proyectos científicos para realizar investigaciones, tanto de campo como de laboratorio, utilizando las metodologías e instrumentos propios de las ciencias biológicas, geológicas y ambientales lo que contribuye a despertar en ellos el espíritu emprendedor (competencias STEM, emprendedora y personal, social y aprender a aprender).

Los criterios de evaluación son, junto con las competencias específicas, uno de los elementos curriculares esenciales, pues permiten valorar la adquisición y desarrollo de las competencias específicas a través de los saberes básicos, integrados por conocimientos, destrezas y actitudes.

Los saberes básicos aparecen agrupados en siete bloques. «Proyecto científico» está centrado en el desarrollo práctico, a través de un proyecto científico, de las destrezas y el pensamiento propios de la ciencia. «Ecología y sostenibilidad» recoge los componentes de los ecosistemas, su funcionamiento y la importancia de un modelo de desarrollo sostenible.

«Historia de la Tierra y la vida» comprende el desarrollo de la Tierra y los seres vivos desde su origen, la magnitud del tiempo geológico y la resolución de problemas basados en los métodos geológicos de datación. «La dinámica y composición terrestre» incluye las causas y consecuencias de los cambios en la corteza terrestre y los diferentes tipos de rocas yminerales. «Fisiología e histología animal» analiza la fisiología de los aparatos implicados en las funciones de nutrición y reproducción y el funcionamiento de los receptores sensoriales, de los sistemas de coordinación y de los órganos efectores. «Fisiología e histología vegetal» introduce al alumnado a los mecanismos a través de los cuales los vegetales realizan sus funciones vitales, y analiza sus adaptaciones a las condiciones ambientales en las que se desarrollan y el balance general e importancia biológica de la fotosíntesis. «Los microorganismos y formas acelulares» se centra en algunas de las especies microbianasmás relevantes, su diversidad metabólica, su relevancia ecológica, y las características y mecanismos de infección de las formas orgánicas acelulares (virus, viroides y priones).

Los saberes básicos son el medio a través del cual se trabajan las competencias específicas y las competencias clave y, a su vez, comprenden conocimientos, destrezas y actitudes esenciales para la continuación de estudios académicos o el ejercicio de determinadas profesiones relacionados con las ciencias biológicas, geológicas y ambientales.

La estrategia recomendada para abordar la enseñanza de Biología, Geología y Ciencias Ambientales, es el enfoque práctico basado en la resolución de problemas y en la realizaciónde proyectos e investigaciones, fomentando tanto el trabajo individual como en equipo. Además, es conveniente conectar esta materia de forma significativa con la realidad del alumnado y con otras áreas de conocimiento en un enfoque interdisciplinar a través de situaciones de aprendizaje o actividades competenciales.

En conclusión, la Biología, Geología y Ciencias Ambientales de 1.º de Bachillerato contribuye, a través de sus competencias específicas y saberes básicos, a un mayor gradode desarrollo de las competencias clave. Su fin último es mejorar la formación científica y la comprensión del mundo natural por parte del alumnado y así reforzar su compromiso por el bien común y sus destrezas para responder a la inestabilidad y al cambio. Con todo ello se busca mejorar su calidad de vida presente y futura para conseguir, a través del sistema educativo, una sociedad más justa equitativa.

Anatomía Aplicada En una sociedad como la nuestra, en la que los avances médicos y sanitarios han permitido aumentar considerablemente la esperanza de vida, cobra especial importancia el conocimiento del propio cuerpo, así como la implementación de hábitos saludables para lograr mejorar nuestra calidad de vida.

Según este planteamiento, la materia de Anatomía Aplicada pretende aportar los conocimientos científicos que permitan comprender el cuerpo humano en su relación con la salud, mediante los conocimientos, destrezas y actitudes que incorpora, procedentes de diversas áreas de conocimiento relacionadas con el estudio del cuerpo humano, tales como la anatomía, la fisiología, la biomecánica y las ciencias de la actividad física. Abarca estructuras y funciones del cuerpo humano como son el sistema locomotor, el cardiopulmonar o los sistemas de control y regulación. Profundiza en cómo estas estructuras determinan el comportamiento motor, además de abordar los efectos que la actividad física tiene sobre ellas y sobre la salud.

El alumnado que cursa Anatomía Aplicada en la etapa educativa de Bachillerato adquiere la base necesaria para comprender el funcionamiento del cuerpo humano. Para ello, se parte de las competencias específicas, que tienen como finalidad comprender que el cuerpo humano actúa como una unidad biológica formada por diversos componentes relacionados y coordinados, manteniendo una visión de funcionamiento global. A esta materia podrán acceder diferentes perfiles de estudiantes, con distintas formaciones previas en ciencias, por lo que la adquisición de sus aprendizajes esenciales se construirá a partir del conocimiento de las ciencias básicas que todo alumno y alumna ha adquirido durante la Educación Secundaria Obligatoria; desde este punto de partida, se irá profundizando en la materia para contribuir a alcanzar las competencias y los objetivos propios de la etapa de Bachillerato.

Los criterios de evaluación, que se formulan en relación directa con las competencias específicas, han de entenderse como una herramienta de diagnóstico y mejora, en relación con el nivel de desempeño que se espera de la adquisición de aquellas. Con este objetivo, se desarrollarán distintas actividades o situaciones propias de la materia, mediante el despliegue de ciertos conocimientos, destrezas y actitudes, previamente adquiridos, que darán respuesta a las necesidades de una sociedad que demanda espíritu crítico y conocimiento científico.

La adquisición de competencias específicas se apoya en el aprendizaje de los saberes básicos de la materia, estructurados en siete bloques, que incluyen los conocimientos, destrezas y actitudes imprescindibles. En el primer bloque de saberes se tratan los aspectos básicos de la organización del cuerpo humano; se trata de un bloque introductorio en el cual se muestra la base estructural de todos los seres vivos (biomoléculas, orgánulos, células, tejidos entre otros) dando una visión global de la organización del mismo, útil para el resto de los bloques. El segundo bloque se ocupa del metabolismo y los sistemas energéticos, además se presentan las principales vías metabólicas a través de las cuales el organismo obtiene energía para realizar el ejercicio. En el tercer y cuarto bloque se aborda toda la nutrición, aparatos y sistemas relacionados con la misma (digestivo, respiratorio, circulatorio y excretor) y los hábitos para su buen funcionamiento. En el quinto y

sexto bloque se engloban la coordinación y relación, en los que se tratan los receptores, sistema neuroendocrino y locomotor, empleando el conocimiento teórico adquirido en su aplicación práctica para facilitar el buen funcionamiento del organismo. El séptimo bloque versa sobre la función reproductora, cuyo estudio completa el conocimiento global del cuerpo humano pretendido con el desarrollo de esta materia. Esta estructura en bloques no debe impedir, comprender que, como ya hemos mencionado, el cuerpo humano actúa como una unidad biológica. A partir del análisis de cualquier acción motora, se puede mostrar la necesaria participación coordinada de todos los sistemas que constituyen el cuerpo humano y de los procesos que la determinan: percepción, toma de decisiones y la propia ejecución.

FÍSICA Y QUÍMICA

El Bachillerato es una etapa de grandes retos para el alumnado, no solo por la necesidad de afrontar los cambios propios del desarrollo madurativo de los adolescentes de esta edad, sino también porque en esta etapa educativa los aprendizajes adquieren un carácter más profundo, con el fin de satisfacer la demanda de una preparación del alumnado suficiente para la vida y para los estudios posteriores. Las enseñanzas de Física y Química en Bachillerato aumentan la formación científica que el alumnado ha adquirido a lo largo de toda la Educación Secundaria Obligatoria y contribuyen de forma activa a que cada estudiante adquiera, con ello, una base cultural científica rica y de calidad que le permita desenvolverse con soltura en una sociedad que demanda perfiles científicos y técnicos para la investigación y para el mundo laboral.

La separación de las enseñanzas del Bachillerato en modalidades posibilita una especialización de los aprendizajes que configura definitivamente el perfil personal y profesional de cada alumno y alumna. Esta materia tiene como finalidad profundizar en las competencias que se han desarrollado durante toda la Educación Secundaria Obligatoria y que ya forman parte del bagaje cultural científico del alumnado, aunque su carácter de materia de modalidad le confiere también un matiz de preparación para los estudios superiores de aquellos estudiantes que deseen elegir una formación científica avanzada en el curso siguiente, en el que Física y Química se desdoblará en dos materias diferentes, una para cada disciplina científica.

El enfoque STEM que se pretende otorgar a la materia de Física y Química en toda la enseñanza secundaria y en el Bachillerato prepara a los alumnos y alumnas de forma integrada en las ciencias para afrontar un avance que se orienta a la consecución de los Objetivos de Desarrollo Sostenible. Muchos alumnos y alumnas ejercerán probablemente profesiones que todavía no existen en el mercado laboral actual, por lo que el currículo de esta materia es abierto y competencial, y tiene como finalidad no solo contribuir a profundizar en la adquisición de conocimientos, destrezas y actitudes de la ciencia, sino también encaminar al alumnado a diseñar su perfil personal y profesional de acuerdo a las que serán sus preferencias para el futuro. Para ello, el currículo de Física y Química de 1.º de Bachillerato se diseña partiendo de las competencias específicas de la materia, como eje vertebrador del resto de los elementos curriculares. Esto organiza el proceso de enseñanza y aprendizaje y dota a todo el currículo de un carácter eminentemente competencial.

A partir de las competencias específicas, este currículo presenta los criterios de evaluación. Se trata de evitar la evaluación exclusiva de conceptos, por lo que los criterios de evaluación están referidos a las competencias específicas. Para la consecución de los criterios de evaluación, el currículo de Física y Química de primero de Bachillerato organiza en bloques los saberes básicos, que son los conocimientos, destrezas y actitudes que han de ser adquiridos a lo largo del curso, buscando una continuidad y ampliación de los de la etapa anterior pero que, a diferencia de esta, no contemplan un bloque específico de saberes comunes de las destrezas científicas básicas, puesto que estos deben ser trabajados de manera transversal en todos los bloques.

El primer bloque de los saberes básicos recoge la estructura de la materia y del enlace químico, lo que es fundamental para la comprensión de estos conocimientos en este curso y el siguiente, no solo en las materias de Física y de Química, sino también en otras disciplinas científicas como la Biología.

A continuación, el bloque de reacciones químicas proporciona al alumnado un mayor número de herramientas para la realización de cálculos estequiométricos avanzados y cálculos en general con sistemas fisicoquímicos importantes, como las disoluciones y los gases ideales.

Los saberes básicos propios de Química terminan con el bloque sobre química orgánica, que se introdujo en el último curso de la Educación Secundaria Obligatoria, y que se presenta en esta etapa con una mayor profundidad incluyendo las propiedades generales de los compuestos del carbono y su nomenclatura. Esto preparará a los estudiantes para afrontar en el curso siguiente cómo es la estructura y reactividad de los mismos, algo de evidente importancia en muchos ámbitos de nuestra sociedad actual como, por ejemplo, la síntesis de fármacos y de polímeros.

Los saberes de Física comienzan con el bloque de cinemática. Para alcanzar un nivel de significación mayor en el aprendizaje con respecto a la etapa anterior, este bloque se presenta desde un enfoque vectorial, de modo que la carga matemática de esta unidad se vaya adecuando a los requerimientos del desarrollo madurativo del alumnado. Además, comprende un mayor número de movimientos que les permite ampliar las perspectivas de esta rama de la mecánica.

Igual de importante es conocer cuáles son las causas del movimiento, por eso el siguiente bloque presenta los conocimientos, destrezas y actitudes correspondientes a la estática y a la dinámica. Aprovechando el enfoque vectorial del bloque anterior, el alumnado aplica esta herramienta a describir los efectos de las fuerzas sobre partículas y sobre sólidos rígidos en lo referido al momento que produce una fuerza, deduciendo cuáles son las causas en cada caso. El hecho de centrar este bloque en la descripción analítica de las fuerzas y sus ejemplos, y no en el caso particular de las fuerzas centrales, que se incluyen en Física de 2.º de Bachillerato, permite una mayor comprensión para sentar las bases del conocimiento significativo.

Por último, el bloque de energía presenta los saberes como continuidad a los que se estudiaron en la etapa anterior, profundizando más en el trabajo, la potencia y la energía mecánica y su conservación; así como en los aspectos básicos de termodinámica que les permitan entender el funcionamiento de sistemas termodinámicos simples y sus aplicaciones más inmediatas. Todo ello encaminado a comprender la importancia del concepto de energía en nuestra vida cotidiana y en relación con otras disciplinas científicas y tecnológicas.

Este currículo de Física y Química para 1.º de Bachillerato se presenta como una propuesta integradora que afianza las bases del estudio, poniendo de manifiesto el aprendizaje competencial, y que despierta vocaciones científicas entre el alumnado. Combinado con una metodología integradora STEM se asegura el aprendizaje significativo del alumnado, lo que resulta en un mayor número de estudiantes de disciplinas científicas.

DIBUJO TÉCNICO

El dibujo técnico constituye un medio de expresión y comunicación esencial para cualquier proyecto de diseño, arquitectura e ingeniería, siendo un aspecto imprescindible del desarrollo tecnológico. Dota al alumnado de un instrumento eficiente para comunicarse de manera gráfica y objetiva para expresar y difundir ideas o proyectos de acuerdo a convenciones que garantizan su interpretación fiable y precisa.

Para favorecer esta forma de expresión, la materia Dibujo Técnico desarrolla la visión espacial del alumnado al representar el espacio tridimensional sobre el plano, por medio de la resolución de problemas y de la realización de proyectos tanto individuales como en grupo. También potencia la capacidad de análisis, la creatividad, la autonomía y el pensamiento divergente, favoreciendo actitudes de respeto y empatía. El carácter integrador y multidisciplinar de la materia favorece una metodología activa y participativa, de aprendizaje por descubrimiento, de experimentación sobre la base de resolución de problemas prácticos, o mediante la participación en proyectos interdisciplinares, contribuyendo tanto al desarrollo de las competencias clave correspondientes, como a la adquisición de los objetivos de etapa. Se abordan también retos del siglo XXI de forma integrada durante los dos años de Bachillerato, como el compromiso ciudadano en el ámbito local y global, la confianza en el conocimiento como motor del desarrollo, el aprovechamiento crítico, ético y responsable de la cultura digital, el consumo responsable y la valoración de la diversidad personal y cultural.

Para contribuir a lo citado anteriormente, esta materia desarrolla un conjunto de competencias específicas diseñadas para apreciar y analizar obras de arquitectura e ingeniería desde el punto de vista de sus estructuras y elementos técnicos; resolver problemas gráfico-matemáticos aplicando razonamientos inductivos, deductivos y lógicos que pongan en práctica los fundamentos de la geometría plana; desarrollar la visión espacial para recrear la realidad tridimensional por medio del sistema de representación más apropiado a la finalidad de la comunicación gráfica; formalizar diseños y presentar proyectos técnicos colaborativos siguiendo la normativa a aplicar e investigar y experimentar con programas específicos de diseño asistido por ordenador.

El desarrollo de un razonamiento espacial adecuado a la hora de interpretar las construcciones en distintos sistemas de representación supone cierta complejidad para el alumnado. En este sentido, los programas y aplicaciones CAD ofrecen grandes posibilidades, desde una mayor precisión y rapidez, hasta la mejora de la creatividad y la visión espacial mediante modelos 3D. Por otro lado, estas herramientas ayudan a diversificar las técnicas a emplear y agilizar el ritmo de las actividades complementando los trazados en soportes tradicionales y con instrumentos habituales (por ejemplo, tiza, escuadra, cartabón y compás) por los generados con estas aplicaciones, lo que facilitará las interacciones y permitirá la realización de construcciones de mayor complejidad, pudiendo mostrar movimientos, giros, cambios de plano y, en definitiva, una representación más precisa de los cuerpos geométricos y sus propiedades en el espacio.

Los criterios de evaluación son el elemento curricular que evalúa el nivel de consecución de las competencias específicas y se formulan con una evidente orientación competencial mediante la movilización de saberes básicos y la valoración de destrezas y actitudes como la autonomía y el autoaprendizaje, el rigor en los razonamientos, la claridad y la precisión en los trazados.

A lo largo de los dos cursos de Bachillerato los saberes adquieren un grado de dificultad y profundización progresiva, iniciándose el alumnado, en el primer curso, en el conocimiento de conceptos importantes a la hora de establecer procesos y razonamientos aplicables a la resolución de problemas o que son soporte de otros posteriores, para gradualmente en el segundo curso, ir adquiriendo un conocimiento más amplio sobre esta disciplina.

Los saberes básicos se organizan en torno a cuatro bloques interrelacionados e íntimamente ligados a las competencias específicas:

En el bloque «Fundamentos geométricos», el alumnado aborda la resolución de problemas sobre el plano e identifica su aparición y su utilidad en diferentes contextos. También se plantea la relación del dibujo técnico y las matemáticas y la presencia de la geometría en las formas de la arquitectura e ingeniería.

En el bloque «Geometría proyectiva», se pretende que el alumnado adquiera los saberes necesarios para representar gráficamente la realidad espacial, con el fin de expresar con precisión las soluciones a un problema constructivo o de interpretarlas para su ejecución.

En el bloque «Normalización y documentación gráfica de proyectos», se dota al alumnado de los saberes necesarios para visualizar y comunicar la forma y dimensiones de los objetos de forma inequívoca siguiendo las normas UNE e ISO, con el fin de elaborar y presentar, de forma individual o en grupo, proyectos sencillos de ingeniería o arquitectura.

Por último, en el bloque «Sistemas CAD», se pretende que el alumnado aplique las técnicas de representación gráfica adquiridas utilizando programas de diseño asistido por ordenador; su desarrollo, por tanto, debe hacerse de forma transversal en todos los bloques de saberes y a lo largo de toda la etapa.

El alcance formativo de esta materia se dirige a la preparación del futuro profesional y personal del alumnado por medio del manejo de técnicas gráficas con medios tradicionales y digitales, así como la adquisición e implementación de estrategias como el razonamiento lógico, la visión espacial, el uso de la terminología específica, la toma de datos y la interpretación de resultados necesarios en estudios posteriores, todo ello desde un enfoque inclusivo, no sexista y haciendo especial hincapié en la superación de la brecha de género que existe actualmente en los estudios técnicos.